Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mini Rev Med Chem ; 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38644715

RESUMEN

Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. With the increasing number of cases of diabetes and drug-resistant diabetes, there is an urgent need to develop new potent molecules capable of combating this cruel disease. Medicinal chemistry concerns the discovery, development, identification, and interpretation of the mode of action of biologically active compounds at the molecular level. Oxadiazole-based derivatives have come up as a potential option for antidiabetic drug research. Oxadiazole is a five-membered heterocyclic organic compound containing two nitrogen atoms and one oxygen atom in its ring. Oxadiazole hybrids have shown the ability to improve glucose tolerance, enhance insulin sensitivity, and reduce fasting blood glucose levels. The mechanisms underlying the antidiabetic effects of oxadiazole involve the modulation of molecular targets such as peroxisome proliferator-activated receptor gamma (PPARγ), α-glucosidase, α-amylase and GSK-3ß which regulate glucose metabolism and insulin secretion. The present review article describes the chemical structure and properties of oxadiazoles and highlights the antidiabetic activity through action on different targets. The SAR for the oxadiazole hybrids has been discussed in this article, which will pave the way for the design and development of new 1,3,4-oxadiazole derivatives as promising antidiabetic agents in the future. We expect that this article will provide comprehensive knowledge and current innovation on oxadiazole derivatives with antidiabetic potential and will fulfil the needs of the scientific community in designing and developing efficacious antidiabetic agents.

2.
Mini Rev Med Chem ; 24(4): 403-430, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37198989

RESUMEN

Diabetes is a chronic, and metabolic disorder that has gained epidemic proportions in the past few decades creating a threat throughout the globe. It is characterized by increased glucose levels that may be due to immune-mediated disorders (T1DM), insulin resistance or inability to produce sufficient insulin by ß-pancreatic cells (T2DM), gestational, or an increasingly sedentary lifestyle. The progression of the disease is marked by several pathological changes in the body like nephropathy, retinopathy, and various cardiovascular complications. Treatment options for T1DM are majorly focused on insulin replacement therapy. While T2DM is generally treated through oral hypoglycemics that include metformin, sulfonylureas, thiazolidinediones, meglitinides, incretins, SGLT-2 inhibitors, and amylin antagonists. Multidrug therapy is often recommended when patients are found incompliant with the first-line therapy. Despite the considerable therapeutic benefits of these oral hypoglycemics, there lie greater side effects (weight variation, upset stomach, skin rashes, and risk of hepatic disease), and limitations including short half-life, frequent dosing, and differential bioavailability which inspires the researchers to pursue novel drug targets and small molecules having promising clinical efficacy posing minimum side-effects. This review summarizes some of the current emerging novel approaches along with the conventional drug targets to treat type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Metformina , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus Tipo 1/inducido químicamente , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Quimioterapia Combinada , Leprostáticos/uso terapéutico , Insulina , Metformina/uso terapéutico
3.
Arch Pharm (Weinheim) ; 356(2): e2200452, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36378997

RESUMEN

The thiazolidine-4-one scaffold has recently emerged as a potential pharmacophore having clinical significance for medicinal chemists. This heterocyclic ring has been reported to possess a plethora of biological activities, including antidiabetic activity that has inspired researchers to integrate this core with different pharmacophoric fragments to design novel and effective antidiabetic leads. The antidiabetic activity has been observed due to the ability of the thiazolidine-4-one nucleus to interact with different biological targets, including peroxisome proliferator-activated receptor γ, protein tyrosine phosphatase 1B, aldose reductase, α-glucosidase, and α-amylase. The present review discusses the mode of action of thiazolidine-4-ones through these antidiabetic drug targets. This review attempts to summarize and analyze the recent developments with regard to the antidiabetic potential of thiazolidine-4-ones covering different synthetic strategies, structure-activity relationships, and docking studies reported in the literature. The significance of various structural modifications at C-2, N-3, and C-5 of the thiazolidine-4-one ring has also been discussed in this manuscript. This comprehensive compilation will provide an inevitable scope for the design and development of potential antidiabetic drug candidates having a thiazolidine-4-one core.


Asunto(s)
Hipoglucemiantes , Tiazolidinedionas , Relación Estructura-Actividad , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Tiazolidinas/farmacología , Tiazolidinas/química , PPAR gamma/metabolismo , Tiazolidinedionas/química
5.
Arch Pharm (Weinheim) ; 355(9): e2100517, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35715383

RESUMEN

2,4-Thiazolidinedione (2,4-TZD), commonly known as glitazone, is a ubiquitous heterocyclic pharmacophore possessing a plethora of pharmacological activities and offering a vast opportunity for structural modification. The diverse range of biological activities endowed with a novel mode of action, low cost, and easy synthesis has attracted the attention of medicinal chemists. Several researchers have integrated the TZD core with different structural fragments to develop a wide range of lead molecules against various clinical disorders. The most common sites for structural modifications at the 2,4-TZD nucleus are the N-3 and the active methylene at C-5. The review covers the recent development of TZD derivatives such as antimicrobial, anticancer, and antidiabetic agents. Various 2,4-TZD based agents or drugs, which are either under clinical development or in the market, are discussed in the study. Different synthetic methodologies for synthesizing the 2,4-TZD core are also included in the manuscript. The importance of various substitutions at N-3 and C-5 and the mechanisms of action and structure-activity relationships are also discussed. We hope this study will serve as a valuable tool for the scientific community engaged in the structural exploitation of the 2,4-TZD core for developing novel drug m\olecules for life-threatening ailments.


Asunto(s)
Antiinfecciosos , Tiazolidinedionas , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Hipoglucemiantes/química , Hipoglucemiantes/farmacología , Ligandos , Relación Estructura-Actividad , Tiazolidinedionas/química , Tiazolidinedionas/farmacología
6.
Eur J Med Chem ; 223: 113606, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34171661

RESUMEN

Leishmaniasis is a parasitic neglected tropical disease caused by various species of Leishmania parasite. Despite tremendous advancements in the therapeutic sector and drug development strategies, still the existing anti-leishmanial agents are associated with some clinical issues like drug resistance, toxicity and selectivity. Therefore, several research groups are continuously working towards the development of new therapeutic candidates to overcome these issues. Many potential heterocyclic moieties have been explored for this purpose including triazoles, chalcones, chromone, thiazoles, thiosemicarbazones, indole, quinolines, etc. It is evident from the literature that the majority of anti-leishmanial agents act by interacting with key regulators including PTR-I, DHFR, LdMetAP1, MAPK, 14 α-demethylase and pteridine reductase-I, etc. Also, these tend to induce the production of ROS which causes damage to parasites. In the present compilation, authors have summarized various significant synthetic procedures for anti-leishmanial agents reported in recent years. A brief description of the pharmacological potentials of synthesized compounds along with important aspects related to structural activity relationship has been provided. Important docking outcomes highlighting the possible mode of interaction for the reported compounds have also been included. This review would be helpful to the scientific community to design newer strategies and also to develop novel therapeutic candidates against leishmaniasis.


Asunto(s)
Compuestos Heterocíclicos/farmacología , Leishmaniasis/tratamiento farmacológico , Tripanocidas/farmacología , Animales , Línea Celular Tumoral , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/toxicidad , Humanos , Leishmania/efectos de los fármacos , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/toxicidad , Relación Estructura-Actividad , Tripanocidas/síntesis química , Tripanocidas/toxicidad
7.
Eur J Med Chem ; 221: 113495, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34020340

RESUMEN

Aurora kinases are a family of serine/threonine kinases that play a crucial role in cell proliferation through the regulation of mitotic spindles. These kinases are the regulatory proteins localized in the various phases of the cell cycle and are involved in centrosome maturation, chromosome alignment, chromosomal segregation, and cytokinesis. They have emerged as one of the validated drug targets for anticancer drug discovery as their overexpression has been implicated in the pathogenesis of various carcinomas. Inhibitors of Aurora kinases induce growth inhibition and apoptosis in a variety of tumor cells. Hence, the design and development of Aurora kinase inhibitors have been widely explored in recent years by the scientific community as potential anticancer agents. Various Aurora kinase inhibitors have been under preclinical and clinical investigations as antitumor agents. This review summarizes the recent strategies of various researchers for the design and development of Aurora kinase inhibitors belonging to different structural classes. Their bioactivity, SARs, molecular modelling, and mechanistic studies have also been described. The comprehensive compilation of research work carried out in the field will provide inevitable scope for the design and development of novel drug candidates with better selectivity and efficacy. The review is constructed after the exhaustive research in this discipline and includes the papers from 2011 to 2020.


Asunto(s)
Antineoplásicos/farmacología , Aurora Quinasas/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Antineoplásicos/química , Aurora Quinasas/metabolismo , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...